



# Meet the Speakers



Andi Hagen
Director of Machine Learning
Sensory, Inc.

Jeff Rogers
VP Sales & Marketing
Sensory, Inc.





### Sensory Quick Overview

### 1) Technology development, Licensing, and Productization

- > 30 years focused on neutral nets and AI for voice
- Mostly PhDs, linguists and technologists

#### 2) Broad suite of in vehicle technologies

o Technologies required for a complete automotive assistant

#### 3) Market proven with deployment expertise

- o Many hundreds of customers (see chart on the right)
- >3B units shipped

#### 4) Tools for devt. & deployment

- Complete automotive SDK
- VoiceHub
- Custom Auto OEM Language Models
- On Device LLMs and synthetic data for model building





#### Sensory Automotive Solution



#### Always on, always available

No need to rely on network connections

#### Wake Word and Wake words

- Single or multiple wake words
- Hot words these are software driven events

#### **Speech to Text**

- o Full speech to text for controls, dictation and more
- o Multiple model size options from 30MB to 220MB

#### **Voice Biometrics**

Combined with wake word or STT

### Automotive Language models, Micro Language models and Small Language models

- o All things you would say to a car
- Micro language model to identify intents & entities
- Starting with an LLM, compress down and run in vehicle with a SLM

#### **Emergency Vehicle Detection**

Designed to run using internal microphones

Copyright 2024 Sensory, Inc. - Confidential & Proprietary Not for Distribution



# **EVD Systems**

#### We need two ingredients: **Technology and Data**











#### Variety of data is key!

- Markets
- Situations
- Noises
- Distance

### Optional DSP + AP Level Solution



DSP solution runs a 80kB model - very efficient with 8 MIPS DSP stage is optional - it reduces processing load on the Head Unit



# System Architecture Overview

- AP Level Two-stage System for Emergency Vehicle Sound Detection
  - 1st stage identifies event candidates
  - 2nd stage revalidates candidates and removes most FAs





# sensory Detection of Sounds - FRR and FAR

How to measure Accuracy in real world conditions?

- False Reject Rate (FRR) = # of missed events / # of events
   For example: 8 out of 200 actual event cases were missed (4% FRR)
- False Alarm Rate (FAR) = # of wrongly reported events / observation time window

For example: 1 false alarm event in 24 hours



### **Evaluation Methodology**

- Measure False Rejects and Number of False Alarms in 24 hours
  - Cars are used only about 1 2 hours per day
  - Therefore 24 hours of driving time covers more than a week in real-life situations
  - We chose 1 FA in 24 hours of driving time as our operating point

24 hours of audio spread out over many days





### **Detection Accuracy**

The table below shows the performance in **percent** of false rejects at **one false alarm in 24 hours of driving - more than a week in reality -** at different background noise levels on a realistic internal siren test set

#### False Reject Rates

| Noise Level   | 20 dBA | 10 dBA | 5 dBA | 0 dBA | Mean |
|---------------|--------|--------|-------|-------|------|
| 1st stage (%) | 1.3    | 0.9    | 0.3   | 0.5   | 0.8  |
| 2nd stage (%) | 1.9    | 1.4    | 1.2   | 1.9   | 1.6  |



### Sensory's EVD Models

#### Sensory has two EVD models available at different sizes

| Small | 1 million parameters | 1.4 MB |
|-------|----------------------|--------|
|-------|----------------------|--------|

Medium 15 million parameters 17 MB

#### Open Source Models

YamNet 1 million parameters

PaSST 80 million parameters



### Accuracy - Sensory Medium





### Accuracy - Sensory Small





### Road to Production

# Key points for a production system for reliable EVD?

- Needs to be small and efficient
- Needs to provide precise timing
- Needs to be accurate under special conditions
- Needs to be deployable on diverse set of hardware/chips
- Needs to be well tested





### Sensory SDK - Low Latency



#### Sensory EVD is fast

- Overall response time within a few hundred milliseconds for first and second stage combined
- Quick response time is essential
- System is optimized for footprint and latency
  - Technology maintains a sliding acoustic history of 1.5 seconds
  - Partially recognized sound events can trigger

### sensory Sensory SDK - Detection Characteristics

- We report detected events and provide
  - Class information (i.e. Siren)
  - The begin & end time
  - An event score
- Given a very long event, multiple event triggers may happen over the course of a single emergency vehicle passing by
  - SDK generally will report events every 500-1000 msecs





### Sensory SDK - DSP and Embedded



#### Supported DSP Platforms

- o ARM Cortex M-Series, ESP32, etc.
- Optimized version for the HIFI5 DSP
- Potentially portable to many DSPs

#### Supported Embedded SDK Hardware Platforms

- Linux: x86\_64, Arm, Arm64
- Windows: x86\_64, MacOS: x86\_64, Arm64
- Android, iOS

#### Supported Programming Languages

Java, C++, Python, Objective-C, Swift, C#

# sensory Low Memory and Power Consumption

- DSP solution runs at as low as **5 MIPS** (depending on dsp model size)
  - 10 MIPS for High Accuracy DSP model
  - 5 MIPS for small model
- AP level solution runs at about 30 MIPS

| Alarm-Sound-Trigger | 1st stage model  | 1st and 2nd stage model |
|---------------------|------------------|-------------------------|
| Model size          | ~88 kB           | ~1.4MB                  |
| MIPS / Memory       | 27 MIPS / 1.1 MB | 33 MIPS / 4.6 MB        |



### Software Dependencies



- EVD/SoundID is part of our Embedded SDK
  - Embedded SDK provided by Sensory
  - LiteRT (and LiteRT Micro) as inference engine
  - Using latest Neural Network runtime solutions for best performance
  - Tuned for small footprint and efficiency

### New Improved EVD Tech Since Q1 2025

Scalable technology and valuable data lead to improved accuracy!



sensory

# Q&A



### Example: Automotive On Device Assistant

